Overzier, R. A. The realm of the galaxy protoclusters. A overview. Astron. Astrophys. Rev. 24, 14 (2016).
Lee, Ok.-G., Hennawi, J. F., White, M., Croft, R. A. C. & Ozbek, M. Observational necessities for Lyα forest tomographic mapping of large-scale construction at z ∼ 2. Astrophys. J. 788, 49 (2014).
Newman, A. B. et al. LATIS: the Lyα Tomography IMACS Survey. Astrophys. J. 891, 147 (2020).
Klypin, A., Yepes, G., Gottlöber, S., Prada, F. & Heß, S. MultiDark simulations: the story of darkish matter halo concentrations and density profiles. Mon. Not. R. Astron. Soc. 457, 4340–4359 (2016).
Nelson, D. et al. The IllustrisTNG simulations: public information launch. Comput. Astrophys. Cosmol. 6, 2 (2019).
Contini, E., De Lucia, G., Hatch, N., Borgani, S. & Kang, X. Semi-analytic mannequin predictions of the galaxy inhabitants in protoclusters. Mon. Not. R. Astron. Soc. 456, 1924–1935 (2016).
Muldrew, S. I., Hatch, N. A. & Cooke, E. A. Galaxy evolution in protoclusters. Mon. Not. R. Astron. Soc. 473, 2335–2347 (2018).
Pichon, C., Vergely, J. L., Rollinde, E., Colombi, S. & Petitjean, P. Inversion of the Lyman α forest: three-dimensional investigation of the intergalactic medium. Mon. Not. R. Astron. Soc. 326, 597–620 (2001).
Stark, C. W., White, M., Lee, Ok.-G. & Hennawi, J. F. Protocluster discovery in tomographic Ly α forest flux maps. Mon. Not. R. Astron. Soc. 453, 311–327 (2015).
Lee, Ok.-G. et al. First information launch of the COSMOS Lyα mapping and tomography observations: 3D Lyα forest tomography at 2.05 < z < 2.55. Astrophys. J. Suppl. Ser. 237, 31 (2018).
Lee, Ok.-G. et al. Shadow of a colossus: a z = 2.44 galaxy protocluster detected in 3D Lyα forest tomographic mapping of the COSMOS discipline. Astrophys. J. 817, 160 (2016).
Chiang, Y.-Ok., Overzier, R. & Gebhardt, Ok. Discovery of a lot of candidate protoclusters traced by ∼15 Mpc-scale galaxy overdensities in COSMOS. Astrophys. J. Lett. 782, L3 (2014).
Chiang, Y.-Ok. et al. Surveying galaxy proto-clusters in emission: a large-scale construction at z = 2.44 and the outlook for HETDEX. Astrophys. J. 808, 37 (2015).
Diener, C. et al. A protocluster at z = 2.45. Astrophys. J. 802, 31 (2015).
Casey, C. M. et al. A large, distant proto-cluster at z = 2.47 caught in a part of speedy formation? Astrophys. J. Lett. 808, L33 (2015).
Cucciati, O. et al. The progeny of a cosmic titan: a large multi-component proto-supercluster in formation at z = 2.45 in VUDS. Astron. Astrophys. 619, A49 (2018).
Cucciati, O. et al. Discovery of a wealthy proto-cluster at z = 2.9 and related diffuse chilly fuel within the VIMOS Extremely-Deep Survey (VUDS). Astron. Astrophys. 570, A16 (2014).
Lemaux, B. C. et al. VIMOS Extremely-Deep Survey (VUDS): witnessing the meeting of a large cluster at z ∼ 3.3. Astron. Astrophys. 572, A41 (2014).
Blanton, M. R. & Moustakas, J. Bodily properties and environments of close by galaxies. Annu. Rev. Astron. Astrophys. 47, 159–210 (2009).
Muzzin, A. et al. The Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS): the position of atmosphere and self-regulation in galaxy evolution at z ∼ 1. Astrophys. J. 746, 188 (2012).
Cappellari, M. et al. The ATLAS3D undertaking—XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular fuel fraction and stellar preliminary mass operate. Mon. Not. R. Astron. Soc. 432, 1862–1893 (2013).
Casey, C. M. The ubiquity of coeval starbursts in large galaxy cluster progenitors. Astrophys. J. 824, 36 (2016).
Wang, T. et al. A dominant inhabitants of optically invisible large galaxies within the early Universe. Nature 572, 211–214 (2019).
Shu, X. et al. A census of optically darkish large galaxies within the Early Universe from magnification by lensing galaxy clusters. Astrophys. J. 926, 155 (2022).
Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core at z = 2.506. Astrophys. J. 828, 56 (2016).
McConachie, I. et al. Spectroscopic affirmation of a protocluster at z = 3.37 with a excessive fraction of quiescent galaxies. Astrophys. J. 926, 37 (2022).
Zavala, J. A. et al. On the fuel content material, star formation effectivity, and environmental quenching of large galaxies in protoclusters at z ≈ 2.0–2.5. Astrophys. J. 887, 183 (2019).
Chapman, S. C. et al. Do submillimeter galaxies actually hint probably the most large dark-matter halos? Discovery of a high-z cluster in a extremely energetic part of evolution. Astrophys. J. 691, 560–568 (2009).
Hung, C.-L. et al. Massive-scale construction round a z = 2.1 cluster. Astrophys. J. 826, 130 (2016).
Shi, Ok. et al. How do galaxies hint a large-scale construction? A case research round a large protocluster at z = 3.13. Astrophys. J. 879, 9 (2019).
Nantais, J. B. et al. Proof for robust evolution in galaxy environmental quenching effectivity between z = 1.6 and z = 0.9. Mon. Not. R. Astron. Soc. 465, L104–L108 (2017).
Weaver, J. R. et al. COSMOS2020: a panchromatic view of the Universe to z ∼ 10 from two complementary catalogs. Astrophys. J. Suppl. Ser. 258, 11 (2022).
Cai, Z. et al. Mapping the Most Huge Overdensities by means of Hydrogen (MAMMOTH). II. Discovery of the extraordinarily large overdensity BOSS1441 at z = 2.32. Astrophys. J. 839, 131 (2017).
Shi, D. D. et al. Spectroscopic affirmation of two extraordinarily large protoclusters, BOSS1244 and BOSS1542, at z = 2.24. Astrophys. J. 915, 32 (2021).
Rakic, O., Schaye, J., Steidel, C. C. & Rudie, G. C. Calibrating galaxy redshifts utilizing absorption by the encompassing intergalactic medium. Mon. Not. R. Astron. Soc. 414, 3265–3271 (2011).
Landy, S. D. & Szalay, A. S. Bias and variance of angular correlation features. Astrophys. J. 412, 64 (1993).
Roche, N. D., Almaini, O., Dunlop, J., Ivison, R. J. & Willott, C. J. The clustering, quantity counts and morphology of extraordinarily purple (R – Ok > 5) galaxies to Ok ≤ 21. Mon. Not. R. Astron. Soc. 337, 1282–1298 (2002).
Trainor, R. F. & Steidel, C. C. The halo lots and galaxy environments of hyperluminous QSOs at z ∼ 2.7 within the Keck Baryonic Construction Survey. Astrophys. J. 752, 39 (2012).
Durkalec, A. et al. The VIMOS Extremely Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z ∼ 3. Astron. Astrophys. 612, A42 (2018).
Ishikawa, S. et al. The galaxy–halo connection in high-redshift Universe: particulars and evolution of stellar-to-halo mass ratios of Lyman break galaxies on CFHTLS deep fields. Astrophys. J. 841, 8 (2017).
Gunn, J. E. & Peterson, B. A. On the density of impartial hydrogen in intergalactic house. Astrophys. J. 142, 1633–1636 (1965).
Weinberg, D. H., Hernsquit, L., Katz, N., Croft, R. & Miralda-Escudé, J. in Construction and Evolution of the Intergalactic Medium from QSO Absorption Line System, Proc. thirteenth IAP Astrophysics Colloquim (eds Petitjean, P. & Charlot, S.) 133–138 (Editions Frontières, 1997).
Lee, Ok.-G., Suzuki, N. & Spergel, D. N. Imply-flux-regulated principal element evaluation continuum becoming of Sloan Digital Sky Survey Lyα forest spectra. Astron. J. 143, 51 (2012).
Chicken, S. et al. Reproducing the kinematics of damped Lyman α methods. Mon. Not. R. Astron. Soc. 447, 1834–1846(2015).
Chicken, S. FSFE: Faux Spectra Flux Extractor. Astrophysics Supply Code Library ascl:1710.012 (2017).
Rahmati, A., Pawlik, A. H., Raičević, M. & Schaye, J. On the evolution of the H I column density distribution in cosmological simulations. Mon. Not. R. Astron. Soc. 430, 2427–2445 (2013).
Qezlou, M., Newman, A. B., Rudie, G. C. & Chicken, S. Characterizing protoclusters and protogroups at z ∼ 2.5 utilizing Lyman-α tomography. Preprint at https://arxiv.org/abs/2112.03930 (2021).
Miller, J. S. A., Bolton, J. S. & Hatch, N. A. Trying to find the shadows of giants—II. The impact of native ionization on the Lyα absorption signatures of protoclusters at redshift z ∼ 2.4. Mon. Not. R. Astron. Soc. 506, 6001–6013 (2021).
Kooistra, R., Inoue, S., Lee, Ok.-G., Cen, R. & Yoshida, N. Detecting Preheating in Protoclusters with Lyα Forest Tomography. Astrophys. J. 927, 53 (2022).
Cai, Z. et al. Mapping the Most Huge Overdensity By way of Hydrogen (MAMMOTH) I: methodology. Astrophys. J. 833, 135 (2016).
Zafar, T. et al. The ESO UVES superior information merchandise quasar pattern. II. Cosmological evolution of the impartial fuel mass density. Astron. Astrophys. 556, A141(2013).
Lee, Ok.-G. & White, M. Revealing the z ∼ 2.5 cosmic internet with 3D Lyα forest tomography: a deformation tensor strategy. Astrophys. J. 831, 181 (2016).
Behroozi, P. S., Wechsler, R. H. & Conroy, C. The common star formation histories of galaxies in darkish matter halos from z = 0−8. Astrophys. J. 770, 57 (2013).
Astropy Collaboration. et al. Astropy: a neighborhood Python package deal for astronomy. Astron. Astrophys. 558, A33 (2013).
Astropy Collaboration. et al. The Astropy Mission: constructing an open-science undertaking and standing of the v2.0 core package deal. Astron. J. 156, 123 (2018).