Sunday, June 19, 2022
HomeNatureA inhabitants of ultraviolet-dim protoclusters detected in absorption

A inhabitants of ultraviolet-dim protoclusters detected in absorption


  • Overzier, R. A. The realm of the galaxy protoclusters. A overview. Astron. Astrophys. Rev. 24, 14 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Lee, Ok.-G., Hennawi, J. F., White, M., Croft, R. A. C. & Ozbek, M. Observational necessities for Lyα forest tomographic mapping of large-scale construction at z 2. Astrophys. J. 788, 49 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Newman, A. B. et al. LATIS: the Lyα Tomography IMACS Survey. Astrophys. J. 891, 147 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Klypin, A., Yepes, G., Gottlöber, S., Prada, F. & Heß, S. MultiDark simulations: the story of darkish matter halo concentrations and density profiles. Mon. Not. R. Astron. Soc. 457, 4340–4359 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Nelson, D. et al. The IllustrisTNG simulations: public information launch. Comput. Astrophys. Cosmol. 6, 2 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Contini, E., De Lucia, G., Hatch, N., Borgani, S. & Kang, X. Semi-analytic mannequin predictions of the galaxy inhabitants in protoclusters. Mon. Not. R. Astron. Soc. 456, 1924–1935 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Muldrew, S. I., Hatch, N. A. & Cooke, E. A. Galaxy evolution in protoclusters. Mon. Not. R. Astron. Soc. 473, 2335–2347 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pichon, C., Vergely, J. L., Rollinde, E., Colombi, S. & Petitjean, P. Inversion of the Lyman α forest: three-dimensional investigation of the intergalactic medium. Mon. Not. R. Astron. Soc. 326, 597–620 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Stark, C. W., White, M., Lee, Ok.-G. & Hennawi, J. F. Protocluster discovery in tomographic Ly α forest flux maps. Mon. Not. R. Astron. Soc. 453, 311–327 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lee, Ok.-G. et al. First information launch of the COSMOS Lyα mapping and tomography observations: 3D Lyα forest tomography at 2.05 < z < 2.55. Astrophys. J. Suppl. Ser. 237, 31 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Lee, Ok.-G. et al. Shadow of a colossus: a z = 2.44 galaxy protocluster detected in 3D Lyα forest tomographic mapping of the COSMOS discipline. Astrophys. J. 817, 160 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Chiang, Y.-Ok., Overzier, R. & Gebhardt, Ok. Discovery of a lot of candidate protoclusters traced by 15 Mpc-scale galaxy overdensities in COSMOS. Astrophys. J. Lett. 782, L3 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Chiang, Y.-Ok. et al. Surveying galaxy proto-clusters in emission: a large-scale construction at z = 2.44 and the outlook for HETDEX. Astrophys. J. 808, 37 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Diener, C. et al. A protocluster at z = 2.45. Astrophys. J. 802, 31 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Casey, C. M. et al. A large, distant proto-cluster at z = 2.47 caught in a part of speedy formation? Astrophys. J. Lett. 808, L33 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Cucciati, O. et al. The progeny of a cosmic titan: a large multi-component proto-supercluster in formation at z = 2.45 in VUDS. Astron. Astrophys. 619, A49 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Cucciati, O. et al. Discovery of a wealthy proto-cluster at z = 2.9 and related diffuse chilly fuel within the VIMOS Extremely-Deep Survey (VUDS). Astron. Astrophys. 570, A16 (2014).

    Article 

    Google Scholar
     

  • Lemaux, B. C. et al. VIMOS Extremely-Deep Survey (VUDS): witnessing the meeting of a large cluster at z 3.3. Astron. Astrophys. 572, A41 (2014).

    Article 

    Google Scholar
     

  • Blanton, M. R. & Moustakas, J. Bodily properties and environments of close by galaxies. Annu. Rev. Astron. Astrophys. 47, 159–210 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Muzzin, A. et al. The Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS): the position of atmosphere and self-regulation in galaxy evolution at z 1. Astrophys. J. 746, 188 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Cappellari, M. et al. The ATLAS3D undertaking—XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular fuel fraction and stellar preliminary mass operate. Mon. Not. R. Astron. Soc. 432, 1862–1893 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Casey, C. M. The ubiquity of coeval starbursts in large galaxy cluster progenitors. Astrophys. J. 824, 36 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Wang, T. et al. A dominant inhabitants of optically invisible large galaxies within the early Universe. Nature 572, 211–214 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shu, X. et al. A census of optically darkish large galaxies within the Early Universe from magnification by lensing galaxy clusters. Astrophys. J. 926, 155 (2022).

    ADS 
    Article 

    Google Scholar
     

  • Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core at z = 2.506. Astrophys. J. 828, 56 (2016).

    ADS 
    Article 

    Google Scholar
     

  • McConachie, I. et al. Spectroscopic affirmation of a protocluster at z = 3.37 with a excessive fraction of quiescent galaxies. Astrophys. J. 926, 37 (2022).

  • Zavala, J. A. et al. On the fuel content material, star formation effectivity, and environmental quenching of large galaxies in protoclusters at z ≈ 2.0–2.5. Astrophys. J. 887, 183 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chapman, S. C. et al. Do submillimeter galaxies actually hint probably the most large dark-matter halos? Discovery of a high-z cluster in a extremely energetic part of evolution. Astrophys. J. 691, 560–568 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Hung, C.-L. et al. Massive-scale construction round a z = 2.1 cluster. Astrophys. J. 826, 130 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Shi, Ok. et al. How do galaxies hint a large-scale construction? A case research round a large protocluster at z = 3.13. Astrophys. J. 879, 9 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Nantais, J. B. et al. Proof for robust evolution in galaxy environmental quenching effectivity between z = 1.6 and z = 0.9. Mon. Not. R. Astron. Soc. 465, L104–L108 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Weaver, J. R. et al. COSMOS2020: a panchromatic view of the Universe to z 10 from two complementary catalogs. Astrophys. J. Suppl. Ser. 258, 11 (2022).

    ADS 
    Article 

    Google Scholar
     

  • Cai, Z. et al. Mapping the Most Huge Overdensities by means of Hydrogen (MAMMOTH). II. Discovery of the extraordinarily large overdensity BOSS1441 at z = 2.32. Astrophys. J. 839, 131 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Shi, D. D. et al. Spectroscopic affirmation of two extraordinarily large protoclusters, BOSS1244 and BOSS1542, at z = 2.24. Astrophys. J. 915, 32 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rakic, O., Schaye, J., Steidel, C. C. & Rudie, G. C. Calibrating galaxy redshifts utilizing absorption by the encompassing intergalactic medium. Mon. Not. R. Astron. Soc. 414, 3265–3271 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Landy, S. D. & Szalay, A. S. Bias and variance of angular correlation features. Astrophys. J. 412, 64 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Roche, N. D., Almaini, O., Dunlop, J., Ivison, R. J. & Willott, C. J. The clustering, quantity counts and morphology of extraordinarily purple (ROk > 5) galaxies to Ok ≤ 21. Mon. Not. R. Astron. Soc. 337, 1282–1298 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Trainor, R. F. & Steidel, C. C. The halo lots and galaxy environments of hyperluminous QSOs at z 2.7 within the Keck Baryonic Construction Survey. Astrophys. J. 752, 39 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Durkalec, A. et al. The VIMOS Extremely Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z 3. Astron. Astrophys. 612, A42 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ishikawa, S. et al. The galaxy–halo connection in high-redshift Universe: particulars and evolution of stellar-to-halo mass ratios of Lyman break galaxies on CFHTLS deep fields. Astrophys. J. 841, 8 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Gunn, J. E. & Peterson, B. A. On the density of impartial hydrogen in intergalactic house. Astrophys. J. 142, 1633–1636 (1965).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Weinberg, D. H., Hernsquit, L., Katz, N., Croft, R. & Miralda-Escudé, J. in Construction and Evolution of the Intergalactic Medium from QSO Absorption Line System, Proc. thirteenth IAP Astrophysics Colloquim (eds Petitjean, P. & Charlot, S.) 133–138 (Editions Frontières, 1997).

  • Lee, Ok.-G., Suzuki, N. & Spergel, D. N. Imply-flux-regulated principal element evaluation continuum becoming of Sloan Digital Sky Survey Lyα forest spectra. Astron. J. 143, 51 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Chicken, S. et al. Reproducing the kinematics of damped Lyman α methods. Mon. Not. R. Astron. Soc. 447, 1834–1846(2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chicken, S. FSFE: Faux Spectra Flux Extractor. Astrophysics Supply Code Library ascl:1710.012 (2017).

  • Rahmati, A., Pawlik, A. H., Raičević, M. & Schaye, J. On the evolution of the H I column density distribution in cosmological simulations. Mon. Not. R. Astron. Soc. 430, 2427–2445 (2013).

  • Qezlou, M., Newman, A. B., Rudie, G. C. & Chicken, S. Characterizing protoclusters and protogroups at z 2.5 utilizing Lyman-α tomography. Preprint at https://arxiv.org/abs/2112.03930 (2021).

  • Miller, J. S. A., Bolton, J. S. & Hatch, N. A. Trying to find the shadows of giants—II. The impact of native ionization on the Lyα absorption signatures of protoclusters at redshift z 2.4. Mon. Not. R. Astron. Soc. 506, 6001–6013 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kooistra, R., Inoue, S., Lee, Ok.-G., Cen, R. & Yoshida, N. Detecting Preheating in Protoclusters with Lyα Forest Tomography. Astrophys. J. 927, 53 (2022).

  • Cai, Z. et al. Mapping the Most Huge Overdensity By way of Hydrogen (MAMMOTH) I: methodology. Astrophys. J. 833, 135 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Zafar, T. et al. The ESO UVES superior information merchandise quasar pattern. II. Cosmological evolution of the impartial fuel mass density. Astron. Astrophys. 556, A141(2013).

    Article 

    Google Scholar
     

  • Lee, Ok.-G. & White, M. Revealing the z 2.5 cosmic internet with 3D Lyα forest tomography: a deformation tensor strategy. Astrophys. J. 831, 181 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Behroozi, P. S., Wechsler, R. H. & Conroy, C. The common star formation histories of galaxies in darkish matter halos from z = 0−8. Astrophys. J. 770, 57 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Astropy Collaboration. et al. Astropy: a neighborhood Python package deal for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article 

    Google Scholar
     

  • Astropy Collaboration. et al. The Astropy Mission: constructing an open-science undertaking and standing of the v2.0 core package deal. Astron. J. 156, 123 (2018).

    ADS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments